Возможность работы с пропущенными данными при использовании CHAID: результаты статистического эксперимента
Аннотация
Литература
Ratner B. Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data. Boca Raton: CRC Press, 2012.
Doove L.L., van Buuren S., Dusseldorp E. Recursive Partitioning for Missing Data Imputation in the Presence of Interaction Effects // Computational Statistics and Data Analysis. 2014. Vol. 72. P. 92–104.
Von Hipple P.T. How to Impute Interactions, Squares, and Other Transformed Variables // Sociological Methodology. 2009. Vol. 39. No. 1. P. 265–291.
Dempster A.P., Rubin D.B. Incomplete Data in Sample Surveys. Vol. 2: Theory and Annotated Bibliography. New York: Academic Press, 1983.
Allison P.D. Missing Data. Thousand Oaks, CA: Sage, 2002.
Rokach L., Maimon O. Decision Trees // Data Mining and Knowledge Dis¬covery Handbook. Boston: Springer, 2010. P. 165–192.
Kenett R., Salini S. Modern Analysis of Customer Surveys: with Applications using R. Chichester: Wiley, 2012.
Kass G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data // Applied Statistics. 1980. Vol. 29. No. 2. P. 119–127.
Quinlan J.R. Unknown Attribute Values in Induction. Proceedings of the Sixth International Machine Learning Workshop. New York: Morgan Kaufmann Publishers Inc., 1989. P. 164–168.
Gentle J.E., Härdle W.K., Mori Y. Handbook of Computational Statistics: Concepts and Methods. Berlin: Springer, 2012.
Gesser-Edelsburg A., Zemach M., Lotan T., Elias W., Grimberg E. Perceptions, Intentions and Behavioral Norms that Affect Pre-license Driving among Arab Youth in Israel // Accident Analysis & Prevention. 2018. Vol. 111. P. 1–11.
Ritschard G. CHAID and Earlier Supervised Tree Methods. Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences / Ed. J. McArdle, G. Ritschard. London: Routledge. 2013. P. 48–74.
Breiman L. Random Forest. Machine Learning. 2001. Vol. 45. P. 5–32.